Analytically exact spiral scheme for generating uniformly distributed points on the unit sphere

نویسنده

  • Cheng Guan Koay
چکیده

The problem of constructing a set of uniformly-distributed points on the surface of a sphere, also known as the Thomson problem, has a long and interesting history, which dates back to J.J. Thomson in 1904. A particular variant of the Thomson problem that is of great importance to biomedical imaging is that of generating a nearly uniform distribution of points on the sphere via a deterministic scheme. Although the point set generated through the minimization of electrostatic potential is the gold standard, minimizing the electrostatic potential of one thousand points (or charges) or more remains a formidable task. Therefore, a deterministic scheme capable of generating efficiently and accurately a set of uniformly-distributed points on the sphere has an important role to play in many scientific and engineering applications, not the least of which is to serve as an initial solution (with random perturbation) for the electrostatic repulsion scheme. In the work, we will present an analytically exact spiral scheme for generating a highly uniform distribution of points on the unit sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere

A variant of the Thomson problem, which is about placing a set of points uniformly on the surface of a sphere, is that of generating uniformly distributed points on the sphere that are endowed with antipodal symmetry, i.e., if x is an element of the point set then -x is also an element of that point set. Point sets with antipodal symmetry are of special importance to many scientific and enginee...

متن کامل

Three Different Algorithms for Generating Uniformly Distributed Random Points on the N-Sphere

We present and compare three different approaches to generate random points on the N -sphere: A simple Monte Carlo algorithm, a coordinate-by-coordinate strategy and a method based on the rotation invariance the normal distribution. The latter algorithm is the fastest.

متن کامل

Distributing points uniformly on the unit sphere under a mirror reflection symmetry constraint

Uniformly distributed point sets on the unit sphere with and without symmetry constraints have been found useful in many scientific and engineering applications. Here, a novel variant of the Thomson problem is proposed and formulated as an unconstrained optimization problem. While the goal of the Thomson problem is to find the minimum energy configuration of N electrons constrained on the surfa...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation

This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational science

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2011